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ABSTRACT: The quantitative interpretation of a Light Beam Induced Current (LBIC) contrast profile (LBIC signal 
normalized to the signal infinitely far from the grain boundary) of a Grain Boundary (GB) allows the estimation of the 
diffusion length in the neighboring grains (left grain L1, right grain L2,) as well as the recombination strength of the GB 
characterized by its equivalent Surface Recombination Velocity (SRV) vs. The quantitative evaluation of L1, L2 and vs is very 
useful regarding e.g. the evaluation of the effectiveness of a hydrogenation step in a solar cell process. For this purpose, we 
developed a direct fitting procedure based on a particular solution of the minority carrier diffusion equation with suitable 
boundary conditions. This theory, initially developed by C. Donolato for analyzing EBIC and/or LBIC contrast profiles, had 
the limitation to assume the same diffusion length (Ldiff) for both neighboring grains which cannot account for non 
symmetrical contrast profile due to differing Ldiff and can thus lead to erroneous evaluation of Ldiff , in particular when the 
SRV of the GB is low. The present contribution fixes this problem by generalizing Donolato’s theory for differing diffusion 
lengths on either side of the GB, and so allows non symmetrical profiles to be investigated. 
Keywords: Recombination, Grain boundaries, Modeling  

 
 
1 INTRODUCTION 
 

Donolato derived expressions for EBIC and LBIC 
contrast profiles [1] (profile normalized to the signal 
infinitely far from the GB also called plateau level or 
background current) assuming, among other, that Ldiff is 
the same either side of the GB. Then, von Roos and Luke 
[2] derived expressions for EBIC profiles, assuming that 
Ldiff could be different from either side of the GB (L1, 
L2), and came to the conclusion that Donolato’s 
expressions lead to erroneous results when L1 differs 
significantly from L2 and the SRV is relatively low. In 
order to develop a fast method, Donolato suggested 
extracting Ldiff and vs from the area and variance of the 
contrast profile [1]. However, Corkish et al. [3] showed 
that an accurate evaluation of the variance requires data 
acquired far from the grain boundaries and introduced a 
direct fitting procedure of the profile to solve this 
problem for EBIC profiles. They used, however, the 
expressions derived by Donolato for cases where Ldiff 
differs on either GB’s side justifying it by the fact that the 
SRV was high enough to neglect the influence of one 
grain on the other. They however recommend, as a useful 
extension, to use the expression of von Roos and Luke in 
a direct fitting procedure. 

Due to the fact that an electron beam is narrower and 
induces a more localized spatial generation than a laser 
beam, EBIC is indeed a more precise and reliable method 
than LBIC for this kind of investigation and thus most of 
the authors in this field developed their technique for 
EBIC. However, LBIC being a more widespread 
technique in the photovoltaic community, it is worth to 
develop these kinds of methods for LBIC also. 

From the physical and mathematical point of view, 
the only difference in the derivation of this theory 
between LBIC and EBIC lies in the generation volume 
function (spatial distribution of the generated electron 
hole pairs created by the electron or the laser beam). 

We will then present our developed generation 
volume function for a Gaussian laser beam.  

Then, due the reduced symmetry of this new 
problem, it is not possible to express our theoretical 
expression in terms of a contrast profile as defined by 
Donolato. We will thus present how we can overcome 
this difficulty. 

After presenting the application of our fitting 
procedure to some typical examples we will present a 
discussion about the limitations of this model and on the 
possible improvements in order to increase its reliability 
and robustness. 

 
 

2 THEORY 
 
2.1 Diffusion problem 

The theoretical contrast profile expression is obtained 
assuming that the collected charges in the emitter are the 
minority carriers driven only by diffusion. Under such 
conditions, the minority carrier continuity equation alone 
is suitable to describe the problem. 

 
∆  (1) 
 
Here Dp is the minority carrier diffusion constant, τ 

the minority carrier lifetime, g(r) the volume generation 
function and p(r) the minority carrier density at point r. 

 
Figure 1: Schematic of the diffusion problem 
 
This description is adequate providing that: 

- generation and recombination of charge carriers 
can be neglected in the emitter layer and in the 
junction depletion region,  

- both, the plane of the grain boundary and the 
electron beam are normal to the collecting 
junction, 



Preprint 23rd EC PVSEC, September 1-5, 2008, Valencia 

- L1,2 is uniform within each grain and 
- the GB may be simply described as a planar 

interface with a particular recombination 
velocity which is independent of the injection 
level. 

Therefore the problem can be schematically 
represented according to Fig. 1, in which the junction is 
represented as an infinitely recombinative surface  

 
| 0 (2) 

 
At the GB, a first condition imposes the continuity of 

the carrier concentration 
 
| |   (3) 

 
The second condition relates the total minority carrier 

flux at the GB to the local carrier density introducing vs, 
the surface recombination velocity at the GB  

 
. |   (4) 

 
Then the measured current collected at the junction is 

found by integrating the normal gradient of p(r) (solution 
of (1) with boundary conditions (2,3,4)) at the surface 
plane z=0 times the elementary charge q 

 
.  (5) 

 
2.2 Carrier collection probability function 

Providing an invariance of the problem along the y-
axis, Donolato shows that the collected current (I) can be 
obtained by the resolution of a 2 dimensional Partial 
Differential Equation (PDE) instead of the 3 dimensional 
PDE of the minority carrier diffusion (1) [1] . 

He showed additionally that, through this 
transformation, the collected current can be described 
more adequately by an equation structurally equivalent to 
the convolution product of the carrier collection 
probability (Q) for a point source (ps) located at (xps, zps) 
in the semiconductor times the function h which is the 
projection in the x,z plane of the volume generation 
function (g) induced by an electron/laser beam centered 
at x0. 

 
. , ,  (6) 

 
, , ,  (7) 

 
For his problem, he could find an expression for the 

carrier collection probability valid for all xp.  
 

,

·   (8) 
 
with  
 

.
 (9) 

 
and s the reduced SRV 
 

 (10) 

 
The integration variable k, which is a consequence of 

the separation constant introduced for the resolution of 
the 2 dimensional PDE, has no intuitive physical 
meaning. 

Here, we have to distinguish the case where this point 
source is in the left grain with diffusion length L1 from 
the case where it is in the right grain with diffusion length 
L2. Considering that, wherever the point source is 
located, one part of the carriers is collected on the right 
side and the remaining part on the left side, both diffusion 
lengths are introduced in the expressions of the collection 
probability. Then for Q- (the superscript – indicates that 
the point source is in grain 1 (xp<0)) we obtain: 

 
,

·  (11) 
 
with 
 

,
, . ,

 (12) 

 
A similar expression can be obtained for Q+ exchanging 
the index 1 and 2 and taking –xps instead of xps. 
 It is easy to check that if L1=L2=Ldiff, (11) leads to 
(8). 
 In order to obtain I, we have thus to integrate 
separately Q+ for all xps>0 and Q- for all xps<0 in (6). 
 
2.2 Volume generation function 

Considering we have a Gaussian shaped laser beam, 
the photon density in the x,y plane is a two dimensional 
Gaussian function from which we suppose that the 
generated e/h pairs are proportional to the light 
absorption in depth. 

This approximation is reasonable providing that the 
semiconductor surface is flat enough to neglect non 
perpendicular reflections or, in other terms, that there is 
no or an only weak light trapping scheme. In this 
condition g could be expressed as: 

 
, , 1 . 

·  (13) 
 
With A the laser beam intensity, α the absorption 

coefficient at the laser wavelength (72 mm-1 for silicon at 
833 nm), η the quantum efficiency, R the reflection 
coefficient and σ the standard deviation of the beam (in 
our case estimated at 7 µm using a scan over a sharp 
edge). 
In this condition making use of (7) h(x,z) is: 
 

, .  (14) 
 
with 
 

1 √  (15) 
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2.3 Profile normalization  
Considering only one diffusion length for both 

neighbouring grains, Donolato’s equations show that the 
first term in the expression of Q (8) will lead to an 
additive constant corresponding physically to the 
background current or the current obtained very far or 
without a GB (I0). He decided then to remove this term 
by subtracting it and normalizing the remaining 
expression by it. This is the so called contrast profile 
which is independent of this value. This term in (11) will 
be, however, different for each side of the GB due to the 
2 different diffusion lengths which will induce 2 different 
plateau levels depending on the side we are considering. 
Therefore, this term becomes dependent on the position 
of the beam and thus we cannot remove it from the 
equation. In order to remove the constant C1 (15) from 
the collected current expression (6), which depends of 
parameters difficult to estimate, we can nevertheless 
perform a normalization referring to the plateau level 
obtained on one side only. By convention, we choose the 
left side (I01) and making use of (6), (11), and (14) we 
derive expression (16) which is our final result.  

The first term in (16) is analogous to the normalized 
plateau level which, in our case, depends on the position 
of the beam (x0). Indeed, it can be observed that if 
L1=L2=Ldiff this term becomes independent of x0 as well 
as of Ldiff and equals 1. 
 
 
2 IMPLEMENTATION AND APPLICATION  
 
2.1 Implementation 

We created a code in GNU octave [4] to use (16) as a 
fitting expression on a measured LBIC profile over a GB 
and normalized to the left side plateau level in which L1, 
L2 and s are fitting parameters. The optimization method 
was the Nelder and Mead simplex algorithm. 

We noticed that the evaluation of the “exp(x²)erfc(x)” 
terms in (16) leads to very strong divergences, if 
inadequately handled, when x tends to infinity (our case). 
In this case, we decomposed the complementary error 
function in continued fraction [5] and simplified the 
global expression. The end result is not diverging. 

We noticed also that the term .  (the 
normalized plateau level on the right side) depends on L1 
and L2 and thus a variation of each parameter influences 
it. In order to improve the simplex algorithm efficiency 
we decided to consider this whole term as a fitting 
parameter and then fit L1, Pright and s while the 
knowledge of L1 and Pright allows retrieving L2 after the 
optimization procedure. 

It can be observed that, while the diffusion length can 
widely influence the shape of the simulated profile in a 
variation over less than 1 order of magnitude, such an 
influence is obtained varying the SRV over 4 orders of 
magnitude. Thus we decided to fit the logarithm of the 

SRV rather than the SRV itself to allow a comparable 
change in the shape of the curves varying the fitting 
parameters of comparable relative values.  
 
2.2  Application 

In a profile we could identify 3 zones of particular 
influence of each parameter.  

- At the bottom of the dip the main influence is 
due to the width of the laser beam (σ) 

- On the walls of the dip the main influence is due 
to the SRV  

- Far from the dip the main influence is due to the 
diffusion lenght 

A good fit in each of these regions generally allows 
an accurate estimation of the corresponding parameter. 

Thus the plateau level determination is very critical in 
order to estimate accurately the diffusion lenght 
(particularly in the case of long diffusion lengths [3]). We 
chose to determine it by an average value of the most 
inner zone of the concerned grain. 

An offset current due to the LBIC instrument is 
always present and needs to be subtracted before 
normalization of the profile. This offset current was 
determined by taking an average value of the signal 
obtained scanning a region where no significant 
generation is possible (we chose a busbar). 

The assumptions used to establish this model do not 
allow us to study all the grain boundaries. The suitable 
ones have to be selected according to the following 
criteria: 

- The GB has to be relatively straight around the 
cutting point and relatively homogenous in its 
direction (assumption of invariance along the y 
axis). 

- An absolute plateau level is an important 
condition for estimating L1,2 and therefore it is 
better to consider grains which have at least a 
size of 3 L1,2 in the cutline direction. 

 
2.3 Results 

We measured a high resolution LBIC map (2 µm 
resolution) using a finely focused laser beam (σ ≈ 7µm) 
of a solar cell fabricated using multicrystalline float zone 
silicon described in [6].  

 
Figure 2: LBIC map of the GB with cutline position 
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We performed a cutline perpendicular to the GB 

under investigation, estimated I01 and the current offset 
and finally normalized the profile.  
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Figure 3: normalized profile of a high SRV GB at the 
cutline defined in figure 2 
 

In the case of a GB with high SRV like in Figure 3 
the inner part of the dip is only weakly influenced by L1,2. 
Thus an accurate fitting in the central region (+/- 30 µm 
around the center) leads to an accurate determination of s. 
The depth of the dip is therefore determined by the width 
of the beam which can be finely tuned in good agreement 
with the σ value estimated independently. Finally the 
accurate fitting in the remaining region, with emphasis on 
the plateau region starting at +/- 100 µm from the profile 
center, provides the most accurate estimation of L1,2. 
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Figure 4: normalized profile of a low SRV GB  
 

It can be observed that varying L2 has nearly no 
influence on the shape of the L1 part or, in other terms, 
the accurate fitting of the left side by the one- and the 
two-diffusion length model leads to the same diffusion 
length value for the left side (see table I). Indeed, due to 
the high SRV value, the carrier transfer from one side to 
the other is weak. Therefore a good approximation could 
be made by fitting separately the right and left part of the 
profile using the one diffusion length model. This could 
be even refined forcing the simulator to use the same 
SRV value for both fits [3].  

In the case of a low SRV that can be observed in 
figure 4, the carrier transfer between both parts is no 
more negligible and the previously mentioned procedure 

leads to large errors in the estimation of L1,2 (see table I).  
In some part of the profiles, we observe that the 

simulated curve slightly overestimates the measured 
values. We observe also that, on these particular regions 
there is some slope change or discontinuity in the 
measured profile which makes us think that a very weak 
GB or a locally different diffusion length (due to a locally 
higher density of impurities particularly visible in the 
case of a weak GB) can cause this discrepancy. 

In this case it seems more relevant to us to fit 
accurately the shape of the plateaus and the inner part of 
the peak rather than to focus on fitting accurately the 
region in between. 

 
Table I: summary of the fitting results (figure 3 and 4) 
 

 High SRV Low SRV 

One Ldiff 
Ldiff [µm] 300 500 
vs [cm/s] 1.1*105 2.8*103 

Two Ldiff 
L1 [µm] 300 1000 
L2 [µm] 200 380 
vs [cm/s] 1.1*105 2.3*103 

 
A more precise discussion about the influence of 2 

different diffusion lengths in the case of a low SRV 
contrast profile is given in [2]. 

 
 

3 DISCUSSION ON THE LIMITATIONS 
 
Several simulations [7] showed that in the case of 

very high diffusion lengths, a relative variation of less 
than 1% of the plateau level can lead to a differing 
diffusion length estimation of a factor of 2 to 3. This is a 
long time known limitation of this approach. Our only 
present issue in order to improve the reliability of the 
model is a very accurate fitting of the plateau region in a 
long range. When the shape could not be modeled very 
accurately in this region, it is most probably due to a 
slightly wrong estimation of the plateau level and then a 
fine tuning of its value is necessary (+/- 0.1 to 1%). 

The same study shows only some slight variations of 
the SRV while finely tuning the plateau level value. 
Therefore the SRV value is far less critical to be 
estimated. 

Assuming that the shape of a profile is unique for a 
given set of fitting parameters, we are presently working 
on a procedure that discards the influence of any scaling 
factor or current offset in the optimization process. This 
could allow not having to estimate the plateau level value 
nor the offset current and discard the major limitation of 
this model. 

The resolution of the LBIC map must be as high as 
possible in order to have the most detailed shape 
possible. For the same purpose the laser should be, in 
theory, as focused as possible. However, in this case the 
power density can become high enough to induce high 
injection conditions in which case the SRV becomes 
dependent on the injection [3]. Therefore care must be 
taken to remain in low injection condition.  

In order to minimize the effect of unavoidable light 
scattering at the surface, care must be taken of choosing a 
wavelength which is mainly absorbed close to the surface 
with the limitation not to be absorbed mainly in the 
emitter.  

In the case of a material with grains smaller than the 
diffusion length, no plateau level can be reached and this 
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method leads to wrong estimations of the diffusion 
length. Nevertheless, an accurate fit of the inner part of 
the peak could lead to a relatively accurate estimation of 
the SRV providing that the SRV is high.  

A much more frequent cause of asymmetry in 
contrast profiles is the presence of another GB less than 3 
diffusion lengths away from the studied GB. Therefore a 
model dealing with this aspect is currently developed. 

We remarked that the shape of some plateaus were 
not fitted accurately even by fine-tuning the plateau level. 
Therefore we thought about another assumption of this 
model which is an infinite cell thickness. Considering 
that the fitted diffusions lengths are of the order or higher 
than the cell thickness (300 µm) we believe that it could 
have an influence on the profile shape and began to build 
the same model considering a finite cell thickness and a 
back surface SRV.  

 
 

4 CONCLUSION 
 
We generalized Donolato’s theory for the case of 

differing diffusion lengths on either side of a GB. 
However, the reduced symmetry of the problem obliged 
us to give up the contrast profile definition of Donolato 
and instead perform a normalization by the left side 
plateau level value. A volume generation function was 
developed for a laser beam on a relatively flat cell 
surface. Several issues related to the implementation and 
to the application to real profiles were discussed. Finally, 
this method gave fairly good results with however a lot of 
limitations mainly related to the problems original 
assumptions. However, several improvements are in 
development in order to make this method an even more 
reliable and robust tool for the investigation of grain 
boundaries in semiconductors. 
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