
Preprint 28th EUPVSEC, Paris, 30th September 4th October 2013 

DISCUSSION AND SIMULATION ABOUT THE EVALUATION OF THE EMITTER SERIES RESISTANCE 

 

 

Gabriel Micard, Giso Hahn 

University of Konstanz, Department of Physics, 78457 Konstanz, Germany 

Author for correspondence: gabriel.micard@uni-konstanz.de, Tel.: +49 7531 88 2060, Fax: +49 7531 88 3895 

 

 

ABSTRACT: The emitter series resistances (Rs,emi) can be extracted from experimentally measured JV curves using 

the two-light intensity method (TLIM) but it can also be calculated from the emitter geometry using analytical 

formulas and finally also computed with arbitrary precision using finite element simulation (FES). On the one hand 

formulas and FES consider Rs,emi as distributed, on the other hand the TLIM assumes Rs,emi not to be distributed. The 

derivation of formulas for a lumped Rs,emi assumes a spatially uniform current density source, which is the case in 

short circuit condition (Jsc), less at maximum power point (mpp) and is wrong at open circuit. We compare at mpp the 

results of TLIM, analytical formulas and FES for which the current density source is a 1D simulated JV curve. In the 

case of a low/high sheet resistance homogeneous emitter, but also for a selective emitter, these methods agree well 

and the impact on cell efficiency is particularly small. This is partially explained by the fact that the voltage drop and 

so the spatial distribution of the current density source over the emitter is small at mpp. We also clarify many issues 

about the various methods used and discuss the limitation of not taking into account Joule losses induced by 

diffusion. 
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1 INTRODUCTION 

 

In silicon solar cells, the series resistance is an 

important and intricate parameter that has to be 

minimized in order to reduce fill factor losses and thus 

cell efficiency losses. The series resistance appears as a 

single resistance in series in the two-diode model in 

which, neglecting the parallel resistance, it describes 

alone all the Joule losses present in a solar cell. 

The series resistance as defined by the two-diode 

model, however, supposes that there is a unique potential 

to bias the diode which is, strictly speaking, not correct 

because of the distributed character of the series 

resistance. 

Speaking more specifically of the series resistance 

contribution of the emitter Rs,emi, the potential 

distribution over the emitter surface is usually said to 

have a negligible consequence on the final current 

density voltage (JV) characteristics, because this potential 

distribution is usually small for not too high emitter sheet 

resistance. One should, however, note that the tendency is 

to use higher emitter sheet resistances to get a better blue 

response which could hinder this assumption. 

Using the fact that the series resistance should 

dissipate the same amount of Joule heat than the solar 

cell, one can make a calculation of the series resistance 

from the sheet resistance and the front grid geometry, 

assuming implicitly that the distributed current density 

source is homogeneously constant. The series resistance 

derived this way is independent of the current density 

delivered by the solar cell. 

One should, however, remark that the assumption of 

a homogeneously constant current density source is 

essentially correct around short circuit (Jsc) conditions, 

but slightly erroneous around the maximum power point 

(mpp) and completely wrong around open circuit (Voc) 

conditions because of an increasing curvature of the JV 

curve at the two aforementioned points. This implies that 

the series resistance becomes a function of the 

inhomogeneity of the current density source distribution 

and thus a function of the cell’s bias. 

From the experimental side, determining the series 

resistance is performed at best by the two-light intensity 

method (TLIM), which is known to be very accurate 

while not assuming any particular structure of the diode 

network of the solar cell. This method also relies on the 

assumption of a lumped series resistance and is not tight 

to Joule heat power dissipation consideration. 

The question raised by this article is therefore how 

these different ways of determining the series resistance 

agree with each other knowing that they all use different 

assumptions which seem difficult to reconcile and to 

assess the validity. 

Using the definition of the series resistance in terms 

of equivalent Joule loss dissipation, we compare the exact 

calculation of the series resistance by finite element 

simulation (FES) to its calculation from the sheet 

resistance and geometry as well as its estimation by 

TLIM in order to understand and comment on the various 

observed discrepancies. 

 

 

2 THEORY AND METHODS 

 

2.1 FlexPDE simulation  

The solar cell is modelled by a distributed junction, 

which delivers current into the resistive sheet of the 

emitter with the current being collected at the finger and 

busbar located at the edge of the emitter sheet. 

In a thin layer of sheet resistance Rsh in which the 

current density is supplied by a current density source 

that could be voltage dependant Jsource(V), the partial 

differential equation (PDE) to be solved for the potential 

distribution is of the Poisson form: 

( )( ) ( )1/
sh source
R V J V∇ ⋅∇ = −   (1) 

In the present case Jsource(V) is the JV curve obtained 

from a PC1D simulation discarding the series resistance. 

The numerical solving of Eq. 1 is performed 

numerically using the finite element solver FlexPDE [1] 

on a rectangular area ranging from the finger edge to the 

center point between two fingers in x and from the busbar 

edge to the center point between two busbars. The finger 

and busbar edges are maintained at a constant potential 

V0 (the external potential of the cell) that is varied during 

the simulation while the two other edges are symmetry 

boundaries in which no carrier flow occurs implying

0V∇ = . 
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Figure 1: Distribution of a) the potential drop, b) the current density source distribution, and c) the dissipated power density 

in the emitter at the busbar (left edge) and finger (bottom edge) corner for an inter-finger distance of 1.9 mm, an inter-busbar 

distance of 50 mm and an emitter sheet resistance of 130 Ω/□ (zoom on busbar/finger corner). The grey level indicates the 

average current density source value Javg in b), the average power loss density in c), and with Rs,emi·Javg the potential drop of 

the lumped series resistance crossed by Javg in a). The black line in a) indicates the location of the average current density of 

b) in the potential map of a). 

 

Varying the finger/busbar potential V0 is therefore 

equivalent to varying the cell bias for which the current 

density of the cell could be obtained by averaging Jsource 

over the whole domain. This way one obtains a JV curve 

of the full solar cell from this simulation. The potential 

drop distribution over the emitter is therefore V(x,y)-V0 

and is represented in Fig. 1a at V0=Vmpp. While this 

potential drop is small (22 mV max) it is sufficient to 

induce an inhomogeneous current density distribution 

(difference of 1 mA/cm2 max) as one can see in Fig. 1b. 

Finally, the dissipated power density distribution in the 

emitter can be calculated using Eq. 2 as displayed in 

Fig. 1c. 
2

/
dis sh

V RΦ = ∇     (2) 
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Figure 2: JV curves simulated at 0.92, 1 and 1.07 sun. 

 

Knowing the total power dissipated by Joule effect as 

well as the average current density crossing the structure 

one can compute the emitter series resistance as  

( )
2

, . /
s emi dis source

A A

R A dS J V dS
 

= Φ  
 

∫ ∫   (3) 

where A is the area of the simulated domain. Details 

about the theory are available in [2]. 

 

2.2 Two Light Intensity Method (TLIM)  

In order to extract the series resistance from 

experimental JV curves we use the TLIM from Wolf and 

Rauschenbach [3]. 

One measures JV curves at various light intensity and 

assumes firstly that modifying the illumination just 

translates the JV curve in the J axis by an amount ∆J. But 

because of the presence of the series resistance the V axis 

should also be translated by an amount ∆V=Rs. ∆J. 
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Figure 3: JV curves simulated at 0.92, 1 and 1.07 sun 

shifted up by their respective Jsc. 

 

One must first note that this method assumes the 

linearity of the solar cell response to the illumination 

level. This is strictly speaking not true because of the 
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nonlinear behavior of the recombination mechanisms to 

the injection and so to the illumination level. However, if 

one chooses a small difference of illumination, the 

linearity can be assumed. Therefore we chose 0.92, 1 and 

1.07 sun delivering JV curves like shown in Fig. 2. 

While ∆J can be taken by the difference of Jsc of the 

two curves and is assumed to be constant for the whole 

curve, one can consider that the ∆V is not constant and 

depends on the voltage. 

For this one makes the first translation by ∆J and 

evaluates the ∆V for various voltages Vi like shown in 

Fig. 3. This modification of the TLIM to get an Rs(V) 

curve was suggested by Swanson [4]. 

In order to increase the accuracy of the Rs 

determination the linear relationship ∆V=Rs·∆J is 

evaluated at 0.92/1 sun and 1/1.07 sun and Rs is fitted 

according to a least square criteria. 

 

2.3 Geometry based emitter series resistance formula 

In the case of a spatially uniform source current 

density distribution N. C. Wyeth [5] showed that the 

series resistance of the emitter could be calculated as  

2 5

, 5
0

1 96
1 (2 1) tanh (2 1)

12
s emi sh

m

a b
R R a m m

b a
π

π

∞
−

=

  = − + +  
  

∑ (4) 

where a is the interfinger distance and b the interbusbar 

distance. While this result is an infinite series the fact that 

its leading term has a -5 power makes it very fast 

converging. Then, five terms are enough to get an 

accuracy higher than 6 digits for the series resistance. 

 

2.4 PC1D simulations 

A standard solar cell with a bulk of thickness 

t=200 µm, resistivity ρ=2 Ωcm, a bulk lifetime τ=500 µs 

and an emitter of 77 Ω/□ is simulated by PC1D [6] at 

0.92, 1 and 1.07 sun while discarding any external 

resistance. 

A simulation of the same structure but ‘cutting’ the 

emitter profile (simulating an etching of the front surface 

[7]) so that its sheet resistance becomes 130 Ω/□ and 

considering the difference of front surface recombination 

velocity due to the lower surface dopant concentration is 

performed at 0.92, 1 and 1.07 sun. 

These JV curves are assumed to include only the bulk 

contribution to the series resistance. 
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Figure 4: JV curves around mpp obtained at 1 sun for the 

emitters of Rsheet=77 and 130 Ω/□ without additional 

series resistance contribution. 

 

One can see in Fig. 4 that the source current density 

distribution observed in Fig. 1b is simply a consequence 

of the potential distribution shown in Fig. 1a. 

2.4 Series resistance of the bulk 

The TLIM applied to the final JV curve delivers the 

total series resistance of the solar cell. Therefore we have 

to subtract the contribution of the bulk to get only the 

contribution of the emitter. 

The estimation of the series resistance of the bulk 

Rs,bulk can be performed analytically by using the formula 

Rs,bulk=ρ·t [8] with thickness t making in our case 

Rs,bulk=0.04 Ωcm2. 

One could also estimate Rs,bulk using the TLIM on the 

PC1D curves. The comparison of the Rs,bulk estimations 

for both emitters and analythical is shown in Fig. 5. 

One observes first that the values extracted by TLIM 

are very much voltage dependent and that estimations for 

high and low sheet resistance emitters are almost the 

same as one should expect, because the bulk is the same 

for both simulations. The calculated value overestimates 

the extracted series resistance for high voltage while it 

underestimates it for low voltage. 

The sharp increase of Rs,bulk at low voltage is 

probably an artifact due to the fact that the TLIM is far 

less precise in this voltage range because ∆V becomes 

large and the relative error on the corrected JV curve 

interpolation becomes large (see Fig. 3). 
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Figure 5: Extracted series resistance of the bulk using the 

TLIM in comparison with the calculated value from the 

geometry. 

 

The underestimation of Rs,bulk at high voltage could 

be attributed to the fact that the diffusion is important in 

the bulk and the series resistance the way it is defined 

implies only drift. 

To be more precise one can say that physically the 

Joule heat is caused by interactions between the electrons 

that form the current density and the atomic ions that 

make up the body of the conductor. These electrons are 

usually assumed to be accelerated by an electric field 

(drift) in which case the Ohm law applies at equilibrium. 

This definition is hindered in the case of crystalline 

silicon solar cells because carrier diffusion is the 

dominant transport mechanism in the bulk and therefore 

generates Joule heat independently and without drift. A 

more general formulation of the Joule loss in cases where 

one should also consider diffusion has been developed by 

Brendel et al. [9]. This is, however, not the purpose of 

this article. 

The Rs,bulk curves extracted from the PC1D 

simulation are therefore doubtful in many respect and we 

will use them with caution in the following in this article. 
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3 STUDY OF HOMOGENEOUS EMITTERS 

 

3.1 Low sheet resistance emitter 

Studying the case of the homogeneous emitter with 

Rsh=77 Ω/□ we first compare the series resistance 

extracted by FlexPDE at 0.92 sun and at 1.07 sun to see 

the largest variations possible due to the cell injection 

non linearity. 

The two Rs,emi values are identical for short circuit 

condition and as long as we are in the plateau of the JV 

curves. This value corresponds exactly to the value 

computed for this problem by the analytical formula 

developed by Wyeth [5] from geometrical consideration 

and sheet resistance only that is shown in purple in Fig. 6. 
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Figure 6: Comparison of Rs,emi for: TLIM extracted 

values (black) corrected by Rs,bulk obtained by TLIM 

(red) or calculated from the geometry (blue), Rs,emi value 

computed by FlexPDE at 0.92 and 1.07 sun illumination 

(dark green and pink curve, respectively), and Rs,emi 

computed from the geometry by Wyeth’s formula 

(purple) for the 77 Ω/□ homogeneous emitter. 
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Figure 7: Comparison of Rs,emi for: TLIM extracted 

values (black) corrected by Rs,bulk obtained by TLIM 

(red) or calculated value from the geometry (blue), Rs,emi 

computed by FlexPDE at 0.92 and 1.07 sun illumination 

(green and pink curve, respectively) and the Rs,emi 

computed from the geometry by Wieth’s formula (purple) 

for the homogeneous emitter with Rsh,emi=130 Ω/□ 

 

One, however, observes a decay of the Rs value at 

high voltage corresponding to the inhomogeneous 

distribution of the current density source as one can see 

in Fig. 1b. We explain this decay as a consequence of the 

fact that the maximum source current density is obtained 

close to the finger/busbars and thus this higher power 

delivered suffers less Joule losses because of the reduced 

path of the current to the finger/busbar. Therefore, the 

equivalent series resistance decays. A very slight 

difference is then observed in the decaying phase of Rs,emi 

between the two-illumination JV curves. This difference 

is, however, so small that it can be neglected. 

Now applying the TLIM to the JV curves simulated 

by FlexPDE delivers a Rs value that systematically 

overestimates the FlexPDE values (black curve in Fig. 6). 

If, however, one subtracts Rs,bulk obtained from the TLIM 

applied to the PC1D curves, the value is in much better 

agreement, slightly underestimating it for the 77 Ω/□ 

emitter (red curve in Fig. 6). 

One can observe that the decay of Rs is also observed 

for the TLIM extracted values. However, the Rs,emi decay 

at low voltage does not correspond to the trend of the 

FlexPDE curve and is a consequence of the sharp 

increase of Rs,bulk observed in Fig. 5. As this increase was 

already doubted due to the low accuracy of the TLIM 

method in this voltage range, it seems also relevant to 

correct the Rs(V) curve by the geometrically calculated 

value of Rs,bulk (blue curve in Fig. 6). This new correction 

is not obviously better than the previous one except at 

high voltage where the match is almost perfect. 

The discrepancy at mpp is nevertheless only of the 

order of 0.01 Ω.cm2 which remains pretty low. And 

therefore one can state that the methods agree with high 

accuracy. 

 

3.2 High sheet resistance emitter 

The discrepancy observed in Fig. 7 between the two 

FlexPDE JV curves obtained at 0.92 and 1.07 sun is more 

significant than with the low sheet resistance emitter but 

still remains very low and can therefore be neglected. 

When corrected by the series resistance of the bulk 

(geometrically calculated), the series resistance obtained 

by TLIM is very good matching the one calculated by 

FlexPDE around mpp, but this time slightly 

overestimating, contrary to the case of the low Rsh emitter 

for an unclear reason. Correcting by the TLIM extracted 

Rs,bulk the discrepancy is higher. 

Like for the low Rsh emitter, the discrepancy is low 

even if Rsh was significantly increased. 

 

3.3 Effects on the PV curves 

Up to now it was checked that various methods to 

determine the series resistance agree quite good between 

each other. However, the effect of considering the series 

resistance lumped or distributed concerning the 

efficiency remains to be investigated at mpp.  

For this purpose we compare the JV curve obtained 

by FlexPDE and the one obtained from PC1D while 

including the influence of a lumped series resistance as 

determined by geometry based formulas (corresponding 

also to the one obtained by FlexPDE at Jsc).The 

difference in the JV curves is so small that only the 

influence on the PV curves around mpp is represented in 

Fig. 8. 

In general, the observed difference between the two 

PV curves obtained from lumped Rs and distributed Rs 

(FlexPDE computed) is very small. The difference is 

slightly higher for the 130 Ω/□ emitter than for the 

77 Ω/□, as expected. It is interesting to note that the 

maximum power is slightly higher if one considers the 

lumped resistance calculation in comparison to the 

distributed one. This fact is surprising at the first glance 
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because the lumped resistance at mpp is lower than at Jsc 

and therefore a lower Rs at mpp should result, in a first 

intention, in a higher efficiency for the FlexPDE curve. 
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Figure 8: Comparison of the power voltage 

characteristics of the 77 Ω/□ and the 130 Ω/□ emitter 

solar cell as computed by FlexPDE and as calculated 

from the PC1D JV curves with the lumped Rs correction. 

 

In Fig. 1b one can observe the level for which Jsource 

reaches its average value Javg at mpp. This current density 

value is therefore the one that would flow in a two-diode 

model circuit at mpp. It also corresponds to a certain bias 

voltage on the JV curve of the 130 Ω/□ emitter shown in 

Fig. 4 that is precisely at the same location in the voltage 

drop mapping (black line in Fig. 1a). 

Representing also in Fig. 1a the potential drop 

induced by the series resistances when the cell delivers 

Javg (grey level), one observes that these two levels do not 

superpose. 

The grey level represents the voltage drop reached in 

a two-diode model lumped resistance and the black one 

represents the voltage drop level in the distributed 

resistance case. As the grey level is smaller than the black 

one, this demonstrates why the efficiency in the lumped 

resistance case is higher. 

Then a difference of approximately 1 mV is observed 

between these two levels which multiplied by Javg would 

lead to an efficiency difference of 0.03% for the 130 Ω/□ 

emitter which is what is observed in Fig. 8. 

This maximum power differences should, however, 

not play a big role, particularly when considering that the 

measurement error is of this order. 

This discrepancy is even smaller for the 77 Ω/□ 

emitter and therefore even more negligible. 

 

 

4 STUDY OF A SELECTIVE EMITTER 

 

Coming finally to the case of the selective emitter, we 

simulate a structure with the low Rsh emitter (77 Ω/□) 

until 100 µm from the finger and 150 µm from the busbar 

while the inner part of the emitter is the high Rsh emitter 

(130 Ω/□). In Fig. 9b the difference of source current 

density between the low and high Rsh emitter can be 

observed. 

One can also observe in Fig. 9c that losses in the 

region close to the finger/busbar are lower because of the 

lower sheet resistance. 

Besides the obvious practical advantage to contact 

more easily a low sheet resistance area, the compromise 

between a lower power loss close to the finger/busbar and 

the decrease of Jsource in this region should be also 

considered for the optimal selective emitter, even if 

secondary. 
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Figure 9: Distribution of a) the potential drop, b) the current density source distribution, and c) the dissipated power density 

in the emitter at the busbar (left edge) and finger (bottom edge) corner for an inter-finger distance of 1.9 mm, an inter-busbar 

distance of 50 mm and a selective emitter with low/high sheet resistance of 77/130 Ω/□ (zoom on busbar/finger corner).The 

grey level indicates the average current density source value Javg in b), the average power loss density in c), and with Rs·Javg 

the potential drop of the lumped series resistance crossed by Javg. The black line in a) indicates the location of the average 

current density of b) in the potential map of a). 
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Figure 10: Comparison of Rs,emi for: TLIM extracted 

values (black) corrected by Rs,bulk obtained by TLIM 

(red) or calculated from the geometry (blue), Rs,emi 

computed by FlexPDE at 0.92 and 1.07 sun illumination 

(dark green and pink curve, respectively), and Rs,emi 

computed from the geometry by Wyeth’s formula 

(purple) for the selective emitter. 

 

This leads in general to an optimal extension of the 

low Rsh emitter of 100-150 µm after the finger/busbar. 

Luckily, these values usually correspond to the safety 

margins for alignment to ensure that the fingers/busbars 

are screen printed entirely in the low Rsh region. 

One finally observe in Fig. 9a that the voltage drop 

map looks similar to the one of the high Rsh 

homogeneous emitter (see Fig. 1a), but the amplitude is 

slightly lower (maximum drops from 22 to 19 mV). 

All these considerations lead to the fact that the series 

resistance should be significantly lower than in the 

homogeneous 130 Ω/□ emitter case, as observed in 

Fig. 10. 

A very troubling result of Fig. 10 is the fact that the 

FlexPDE curves are diverging to infinity when coming 

closer to Voc while having a similar shape as for the 

homogeneous emitter on the rest of the Rs(V) curve. 

This is a consequence of the definition of the series 

resistance used in FlexPDE as we will see. Indeed Voc 

condition implies that the total current density collected 

is zero. 

In the case of the homogeneous emitter the Joule loss 

is also brought to zero and, strictly speaking, the series 

resistance is undetermined at this bias point. 

However, in the case of the selective emitter the Joule 

losses are not brought to zero as a consequence of the 

different current density of the inner (low Rsheet emitter) 

and the outer cell (high Rsheet emitter). 

Considering for the simplicity of the argumentation 

to discard the effect of the series resistance as well as the 

fact the inner cell does not have the same cell area as the 

outer cell, both cells can be considered in parallel and so 

having the same bias voltage. 

As sketched in Fig. 11 there is one bias voltage for 

which the output current density is zero defining the Voc 

of the solar cell. But this voltage point implies that the 

current density of the inner cell, which acts as a 

generator, is delivered entirely to the outer cell, which 

acts as a receptor. 

While the total output current density is zero, this 

current density delivery from the outer to the inner cell 

through the emitter resistive layer induces a non-zero 

Joule loss. 
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Figure 11: JV curves around Voc obtained at 1 sun for 

the emitters of Rsheet=77 and 130 Ω/□ without additional 

series resistance contribution. 

 

Therefore, according to the definition of Rs,emi of 

Eq. 3, one divides a non-zero Joule loss by a zero net 

output current squared, leading to an infinite value of 

Rs,emi at Voc. 

This fact does not affect the computation of the 

simulated JV curve by FlexPDE and therefore the TLIM 

method can be performed without any issues. 

Coming back to Fig. 10 the TLIM method does not 

produce such divergence of the curves close to Voc which 

stay similar in shape to the one of the homogeneous 

emitter. 

As explained in Sec. 2.2, the series resistance 

extracted from TLIM is defined as ∆V=Rs. ∆J where ∆J 

is taken to be the difference in Jsc of curves at different 

illumination. Therefore ∆J is never equal to zero, and 

there is no divergence of the Rs(V) curve. 

This discrepancy of the two methods around Voc is 

therefore quite fundamental and raises the question of the 

overall validity of a realistic circuit based model in the 

case of the selective emitter at Voc condition. 

Taking into account the sheet resistance and the short 

circuit current density of high and low Rsh emitter as well 

as the global geometry of the selective emitter, Maeckel 

et al. [2] recently developed an analytical method that 

approximates very well the series resistance obtained by 

FlexPDE at Jsc. The geometrically calculated series 

resistance is in such case the one computed using the 

method of Maeckel et al. which is, like the method of 

Wyeth, voltage independent. 

It is finally very interesting to observe in Fig. 10 that 

at mpp the TLIM corrected by the geometrically 

calculated bulk series resistance is almost perfectly 

matching the values derived by FlexPDE. The only hint 

to explain such fact comes from the fact that Rs was 

underestimated for low Rsh emitter (see Fig. 6) and 

overestimated for high Rsh emitter (see Fig. 7) by about 

the same amount. Therefore intuitively one might expect 

that the combination of both delivers a good 

approximation in the case of a selective emitter. 

It is therefore particularly surprising that the most 

complicated structure, and therefore the one where the 

usual approximations of lumped series resistance, 

uniform source current density distribution and uniform 

diode model applies the least, delivers the best agreement 

between simulated and ‘experimentally measured’ series 

resistance. 
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There is presently no fully satisfactory explanation 

for this fact. 

The disagreement between geometrically calculated 

series resistance and the two aforementioned values is 

also pretty low (less than 0.005 Ωcm2). 

 

 

5 DISCUSSION 

 

It has been shown that all methods compared in this 

article conclude that the series resistance should reduce 

while going toward Voc because of the non homogeneous 

current density source distribution. However, the Rs 

reduction observed at mpp is still low and its influence on 

the JV curve leads to a negligible discrepancy in 

efficiency even for a high sheet resistance emitter. 

The finite element simulation of the Rs,emi(V) curve, 

using as distributed current density source the JV curves 

of a one-dimensional cell simulated discarding series 

resistance, is considered the most realistic method in this 

study. Nevertheless, it leads to an unrealistic Rs,emi(V) 

curve at Voc condition of the selective emitter for a 

fundamental definition issue, while almost perfectly 

agreeing with the other simulations around mpp. 

From this point of view it is not clear what should be 

modified in this simulation to make the various Rs,emi 

determinations match at Voc. 

We suspect that the full physical simulation of this 

problem (by e.g. Synopsis Sentaurus), which would be an 

even more realistic simulation of this problem, would not 

bring more clarifications about this issue. This is because 

diffusion is also included and the Joule losses induced by 

drift are not easily separable from the ones induced by 

diffusion. In the definition of the series resistance, one 

however does not make the distinction between drift and 

diffusion in the origin of Joule loss, and therefore, strictly 

speaking, the methods investigated in this article would 

be invalid as they all assume only drift as an origin for 

Joule losses. 

 

 

6 CONCLUSION 

 

It has been shown in this contribution that the 

determinations of the series resistance contribution of the 

emitter from ‘experimentally measured’ JV curves, from 

analytical formula taking into account the emitter 

geometry, and from finite element simulation of Joule 

effects in the emitter agree well for all investigated 

situations at the maximum power point. 

It is still not very clear why the agreement is so good, 

considering all the various kind of assumptions that are 

not strictly met for the various methods. 

It is supposed that the various assumptions lead to 

discrepancies that are in any case small at mpp and 

sometimes even compensate each other, nearly regardless 

of the emitter structure. 

This article, however, does not treat the case of non-

uniform sheet resistance due to non uniform emitter 

formation and/or bulk non uniformity. In such case, 

however, one might think that the probable additional 

discrepancies would remain small. In any case the effect 

of considering the series resistance lumped or distributed 

in such case should have a smaller impact on the 

equivalent circuit modeling compared to the impact that 

such non uniformity in terms of lifetime in the bulk, 

emitter degradation and, probably above all, shunt due to 

low parallel resistance would have. 

It should be stressed that in the case of a cell concept 

where the relative contribution of the bulk series 

resistance to the total series resistance is significant (local 

back contacts, IBC, PERC …) an estimation of Rs by 

TLIM is always possible but is probably significantly 

different from drift based simulations or analytical 

formulas based on geometry because of the diffusion in 

the bulk. 
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