ABSTRACT: Complete two-dimensional simulations of internal quantum efficiency (IQE) have been carried out for planar and macroscopically V-grooved Si solar cells. The results have been compared with experimental data as well as one-dimensional calculations which were performed with PC1D and IQE1D. The impact of macroscopic textures on IQE has been investigated by simulation studies on bulk diffusion length and back surface recombination velocity for a V-structured and a corresponding planar cell. It is shown that the larger collection surface of V-grooved cells causes a strongly enhanced carrier collection efficiency. The IQE in the near infrared wavelength range is increased with a resulting gain in short circuit current of up to 1.5mA/cm2 for medium carrier diffusion lengths.

Keywords: Simulation - 1: Characterization - 2: Texturization - 3
these are of minor importance [4] and should cause only little error. Taking diffusive reflections into account will be part of an update of SONNE.

3 COMPARISON OF DESSIS+SONNE WITH PC1D, IQE1D AND EXPERIMENTAL DATA

In order to investigate deviations in the calculations performed with PC1D [5,6], IQE1D [7] and DESSIS+SONNE due to different numerical algorithms and internal physical models three cell types have been simulated: a planar cell with fully Al metallised back contact (one-dimensional problem), a planar cell with local Al back contacts (quasi one-dimensional problem) and a one-sided macroscopically V-grooved solar cell (two-dimensional problem). The results of the different programs are compared in this section.

3.1 Planar cells

The following identical input parameters were used in the simulations with DESSIS+SONNE and PC1D: W = 230μm, 0.5Ωcm p-type material, 90Ω/sq. emitter, passivated front surface with recombination velocity S_{SiO2} = 100cm/s at the Si-SiO2 interface, Al back, no BSF, back surface recombination velocity S_b = 10^3 cm/s, internal back surface reflectance R_b = 0.71.

Figure 3: Comparison of simulated IQEs obtained by PC1D and DESSIS+SONNE using identical input parameters.

Fig. 3 shows a good agreement between the different methods for wavelengths larger than 500 nm. In order to quantify the introduced uncertainty in L_b each simulation has been fitted by IQE1D (not shown in Fig.3 for clarity reasons). Whereas the relative differences of IQE1D and PC1D in L_b are below 2%, DESSIS+SONNE exhibits deviations from IQE1D of about 8% for small diffusion lengths and 3% for the largest investigated L_b.

The varying results for λ < 500nm (Fig. 1) are mainly due to the two-dimensional geometry of the front surface respectively the finger grid. The high surface recombination velocity (SRV) under the front contacts is accounted for in DESSIS but neglected in the PC1D simulations when using S_{SiO2} as the spatially averaged surface recombination velocity S_{SRV}. Additionally we used in the DESSIS simulations a doping independent SRH-recombination model [2], because the doping dependent model led to an unexpected erratic influence of L_b on the IQE for λ < 600nm.

A planar solar cell (W = 250μm, 1Ωcm p-type material, 85Ω/sq. emitter doping profile, passivated front surface) with local back contacts and passivated surfaces between the contacts has been used to test DESSIS+SONNE in the case of a two-dimensional back surface design with low S_b. The bulk diffusion length and the spatially averaged back surface recombination velocity S_{SRV} were taken from a fit of the experimental data performed with IQ1D. As there is no option in DESSIS to define an averaged SRV, the value of S_{SRV} obtained by IQE1D was taken as the SRV at the passivated surfaces S_{SiO2} between the back contacts. In order to quantify the resulting S_{SRV} of the DESSIS calculation and to compare PC1D with IQE1D, again each simulation (Fig. 4) was fitted by IQE1D.

Figure 4: Comparison of PC1D and DESSIS+SONNE for a planar cell with local line-shaped back contacts. Deviations between the results are mainly due to different spatially averaged SRVs when using identical input parameters in the one- and two-dimensional simulations.

Table I: DESSIS and PC1D input parameters (input) for a planar cell with local back contacts and resulting values from IQE1D fits to the calculated data (IQE1D fit to).

<table>
<thead>
<tr>
<th>parameter</th>
<th>DESSIS</th>
<th>IQE1D fit to</th>
<th>PC1D</th>
<th>IQE1D fit to</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{SiO2}</td>
<td>3500</td>
<td>S_{SRV}</td>
<td>4000</td>
<td>S_{SRV}</td>
</tr>
<tr>
<td>L_b</td>
<td>296</td>
<td>L_b</td>
<td>280</td>
<td>L_b</td>
</tr>
</tbody>
</table>

As in the previous example only small differences between the one-dimensional models of PC1D and IQE1D were found (see Table I). Deviations between PC1D and DESSIS+SONNE for λ > 800nm (Fig. 4) are mainly due to the local back contacts causing a higher S_{SRV} in the DESSIS simulation although again a difference in L_b of about 5% is included.

3.2 Mechanically V-grooved Cell

In order to verify the performed two-dimensional IQE calculations the measured IQE of the cell shown in Fig. 1 (W = 231μm, groove depth d = 91μm, Al back, no BSF, 0.5Ωcm p-type wafer, 90Ω/sq. emitter, shallow...
angle evaporated front grid) has been fitted by simulated data with L_9 as a fit parameter. In the case of oblique cell structures numerical errors for incident light with penetration depths smaller than 5µm arise due to a limited resolution of the discretization mesh close to the surface (17000 grid points were used). Therefore wavelengths below 700nm were omitted in the fit. A very good agreement of simulation and experiment was achieved for $L_9 = 90\pm 7$μm (Fig. 5). The structure in the experimental IQE for $\lambda > 1040$nm is the result of an error in the used reference detector and has no physical meaning.

An attempt to fit the experimental data with PC1D using a facet angle $[5]$ of 60° was - as expected - not successful no matter what combination of S_0 and L_9 was tried. The conditions for the quasi one-dimensional model to hold are not satisfied by a V-groove depth of 91μm, which makes a two-dimensional treatment necessary.

The good agreement between simulation and experiment makes - in principle - a determination of L_9 and S_0 possible by fitting two-dimensional simulations to measured IQEs. If both L_9 and S_0 are unknown, a separation of these parameters is complicated by a measurement uncertainty of about 3% relative and only upper and lower limits for L_9 and S_0 can be obtained from simulations $[7]$.

4 SIMULATIONS

In order to quantify the expected impact of the enhanced carrier collection efficiency η_c in macroscopic V-structures on the IQE and the short circuit current density J_sc for $\lambda > 700$nm, a numerical comparison between the V-grooved cell of section 3 (cell A) and a corresponding planar cell (cell B, $W = 231$μm, reflectance simulated with SONNE, all other parameters identical to cell A) was carried out with DESSIS. Figs. 6 and 7 give the dependence of the IQE of cell A and cell B on L_9 in the case of a fully metallized back contact without BSF.

![Figure 6: Simulated IQE of cell A (V-grooved) for several bulk diffusion lengths.](image)

![Figure 7: Simulated IQE of cell B (planar) for several bulk diffusion lengths.](image)

![Figure 8: IQE and fraction of the photogenerated carriers that are collected under short circuit conditions η_c for both cells in the case of $L_9 = 70$μm. The enhanced η_c (12% - 16% absolute for 900nm $< \lambda < 1200$nm) causes a gain of approximately 1.5mA/cm² in the short circuit current density.](image)

In the near infrared wavelength range ($\lambda > 800$nm) the IQE of cell A is considerably higher than that of cell B for all L_9. To estimate the improvement in J_sc due to the raised η_c of V-grooved cells (Fig. 8) an averaged cell reflectance of 10% for both cells was assumed when integrating the data shown. Double layer antireflection
coatings led to a reflectance of about 5% for wavelengths below 1000nm for both cell types. A maximum current density gain \(\Delta J_c = 1.6 \text{mA/cm}^2 \) of cell A with respect to cell B is obtained for \(L_b = 70 \mu \text{m} \) (Fig. 8). But even for \(L_b = 340 \mu \text{m} \) (\(S_b = 10^7 \text{cm/s} \)) there is still an expected improvement in \(J_a \) of about 0.85mA/cm². Using the real cell reflectances, the lower \(R(\lambda) \) of the V-grooved cell adds an additional current gain.

In order to study the influence of \(S_b \) on the IQE both cells were simulated with local back contacts (5% metallization) and a Si-SiO₂ passivated surface between them (Figs. 9 + 10). For both cell types the IQE showed to be sensitive to variations in \(S_{\text{SiO}2} \) only between 100cm/s and 10³cm/s. Fitting the IQEs of the planar cell in the case of \(L_b = 340 \mu \text{m} \) with IQE1D, \(S_{\text{SiO}2} \) could be estimated to 600, 1700 and \(10^3 \text{cm/s} \) for \(S_{\text{SiO}2} = 100, 1000, 10^3 \text{cm/s} \) respectively.

Figure 9: Simulated IQE of cell A (V-grooved) and cell B (planar) for several back surface recombination velocities in the case of \(L_b = 140 \mu \text{m} \).

Figure 10: Simulated IQE of cell A (V-grooved) and cell B (planar) for several back surface recombination velocities in the case of \(L_b = 340 \mu \text{m} \).

Two conclusions can be drawn from the calculated data. 1) For \(L_b < 140 \mu \text{m} \) (\(L_b < 3/5 \text{ W} \)) cell A exhibits even in the case of \(S_{\text{SiO}2} = 10^3 \text{cm/s} \) a higher IQE than cell B with \(S_{\text{SiO}2} = 0 \text{cm/s} \) (Fig. 9). 2) For \(L_b > \text{W} \) the IQE of cell A is less sensitive to variations in \(S_{\text{SiO}2} \) than cell B, which might be due to the altered optical generation close to the cell back in the case of macroscopic V-grooves.

Also the apparent development of a local maximum in the IQE around 900nm in some of the curves is not yet understood. In any case further detailed studies have to be carried out to clarify these effects. An experimental comparison of V-grooved and planar cells will be given in [8].

5 CONCLUSIONS

Complete two-dimensional calculations of internal quantum efficiencies have been carried out for planar and mechanically V-grooved solar cells. The method could be verified by comparison with the programs PC1D and IQE1D in the case of planar cells and with measurements in the case of V-grooved cells.

PC1D’s quasi one-dimensional model was found to be insufficient to fit the experimental IQE of the investigated macroscopically structured cell.

Numerical studies investigating the impact of \(L_b \) and \(S_b \) on the IQE for a V-grooved and a corresponding planar cell show a strong enhancement of the quantum efficiency in the near infrared wavelength range. Assuming a 10% reflectance for both cells, the short circuit current density improvement of 1.5mA/cm² for \(L_b = 70 \mu \text{m} \) is due to the enhanced carrier collection efficiency in the macroscopic V-structure. For \(L_b < 140 \mu \text{m} \) (\(L_b < 3/5 \text{ W} \)) the investigated V-grooved cell type exhibits even in the case of maximum back surface recombination velocity a higher IQE than the planar cell without any back surface recombination.

Acknowledgements

The financial support of the German BMBF under contract 0329557A and the European Commission in the frame of project JOR3-CT95-0030 is gratefully acknowledged.

REFERENCES