ENABLING DIELECTRIC REAR SIDE PASSIVATION FOR INDUSTRIAL MASS PRODUCTION BY DEVELOPING LEAN PRINTING-BASED SOLAR CELL PROCESSES

Thomas Lauermann, Thomas Lüder, Sascha Scholz, Bernd Raabe, Giso Hahn, Barbara Terheiden
University of Konstanz, Department of Physics, 78457 Konstanz, Germany

ABSTRACT

Al₂O₃ rear-passivated large-area silicon solar cells with screen-printed metallization are demonstrated for the first time.

An industrially feasible solar cell process is described that is based on printing steps to contact base and emitter of large area solar cells with dielectric rear side passivation. The base of the cell is contacted at the rear by a full area screen-printed aluminum layer on an inkjet-structured Al₂O₃/SiNx-layer stack. The Al rear contacts are co-fired with the screen-printed silver front contacts. The firing temperature is reduced to limit deterioration of the passivation ability of the aluminum oxide layer. Synergies are exploited by combining the structuring steps for the formation of openings in the rear side dielectric by hydrofluoric acid with the selective emitter formation on the front side.

Investigations on lifetime samples show a 2.5-fold increase in effective lifetime for surfaces passivated by an Al₂O₃/SiNx stack compared to fully metalized Al-BSF rear sides. This low surface recombination velocity is combined with a low contact resistance.

On 125 × 125 mm² boron-doped Czochralski wafers with resistivity of 3 Ωcm an efficiency of 18.6% is achieved, that is a gain of 0.7% absolute compared to the efficiency of 17.9% of the best reference cells with a full area Al-BSF.

LIFETIME AND SERIES RESISTANCE

Lifetime and series resistance samples are fabricated on 3 Ωcm boron-doped Czochralski material. The 125 × 125 mm² large area wafers are NaOH-etched and coated on both sides with either 30 nm Al₂O₃ or a stack consisting of 15 nm Al₂O₃ and 80 nm SiNx. The Al₂O₃ layer is deposited in an Oxford FlexAL and the SiNx in an industrial direct plasma PECVD reactor. The operating temperature of the PECVD system is also slightly adjusted to offer ideal Al₂O₃ annealing conditions, according to [1]. Subsequently, an etch resist mask with four different point
contact grids is applied with an inkjet printer and the dielectric layer stack is opened locally using a HF solution. A full area Al contact is screen-printed on both sides of the samples using a fritless Al paste followed by firing the samples in a belt furnace. Afterwards, the wafers are diced into 50 x 62 mm² pieces, each featuring one specific point contact geometry.

The samples which are passivated by a single layer of Al₂O₃ without the protecting SiNx layer show a largely destroyed Al₂O₃ layer after metallization etch-back. Al pastes contain agents that react chemically with the Al₂O₃ layer during firing. These agents are responsible for interconnecting the AlOₓ-coated Al particles in the paste as described in [6]. Therefore the single-layer approach is discarded for the experiments on cell level and all Al₂O₃ rear sides receive a capping PECVD SiNx layer which was shown to remain intact during the firing process.

After performing series resistance measurements between the front and the back contact, the Al paste is etched off in HCl solution to enable lifetime measurements by quasi-steady-state photoconductance (QSSPC).

The samples which are passivated by a single layer of Al₂O₃ without the protecting SiNx layer show a largely destroyed Al₂O₃ layer after metallization etch-back. Al pastes contain agents that react chemically with the Al₂O₃ layer during firing. These agents are responsible for interconnecting the AlOₓ-coated Al particles in the paste as described in [6]. Therefore the single-layer approach is discarded for the experiments on cell level and all Al₂O₃ rear sides receive a capping PECVD SiNx layer which was shown to remain intact during the firing process.

<table>
<thead>
<tr>
<th>Via width [µm]</th>
<th>Pitch</th>
<th>Rₛ [mΩ]</th>
<th>eff. τ [µs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Wide</td>
<td>19.4</td>
<td>18.1</td>
</tr>
<tr>
<td>200</td>
<td>Wide</td>
<td>25.9</td>
<td>25.9</td>
</tr>
<tr>
<td>100</td>
<td>Narrow</td>
<td>20.2</td>
<td>16.4</td>
</tr>
<tr>
<td>60</td>
<td>Narrow</td>
<td>34.6</td>
<td>20.8</td>
</tr>
<tr>
<td>Full area Al-BSF reference</td>
<td></td>
<td>4.5</td>
<td>10.5</td>
</tr>
</tbody>
</table>

Table 1: Effective lifetimes of the samples passivated with an Al₂O₃/SiNx stack on both sides. The dielectric layer is locally opened, the Al paste is alloyed and subsequently the residues are etched off. The overall series resistance of the corresponding samples with both sides still contacted is also given.

After performing series resistance measurements between the front and the back contact, the Al paste is etched off in HCl solution to enable lifetime measurements by quasi-steady-state photoconductance (QSSPC).

The data of table 1 show that the effective lifetimes as determined after the firing process are in all cases higher for the dielectrically passivated samples than for the samples with a full area Al-BSF passivation. The size of the local openings in the dielectric Al₂O₃/SiNx stack affects the lifetime and series resistance. The smaller openings are causing a larger resistance. Also, a narrower spacing causes a lower effective lifetime. Therefore, a wide pitch and via widths above 200 µm are selected as the most promising candidates for solar cell fabrication. The impact on the series resistance of the final solar cells is discussed with the cell results.

SOLAR CELL FABRICATION

For the fabrication of solar cells, a selective emitter structure [4] is chosen for the front side of the 3 Ωcm boron-doped 125 × 125 mm² Cz-Si wafers with an alkaline texture. Emitter profile and pastes are chosen to achieve a broad process window for front contact formation. These measures help to adapt the firing parameters since it is known that Al₂O₃ layers can lose some of their passivating abilities when being processed at too high temperatures [3].

<table>
<thead>
<tr>
<th>References</th>
<th>Passivated Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline Texture</td>
<td>Strong emitter diffusion</td>
</tr>
<tr>
<td>Chemical polish rear</td>
<td>Al₂O₃ and SiNx deposition</td>
</tr>
<tr>
<td>Inkjet masking front … and rear</td>
<td>Sel. emitter formation… and via etching</td>
</tr>
<tr>
<td>PECVD SiNx ARC</td>
<td>Screen printing Ag front grid and full Al rear side</td>
</tr>
<tr>
<td>Co-firing</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Process flow chart for dielectrically passivated solar cells and full area BSF references.

The finished cells show the following IV characteristics.

<table>
<thead>
<tr>
<th>Jₜ [mA/cm²]</th>
<th>FF [%]</th>
<th>Vₒc [mV]</th>
<th>η [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. 36.4</td>
<td>79.5</td>
<td>619.1</td>
<td>17.9</td>
</tr>
<tr>
<td>Ref. 36.5</td>
<td>78.9</td>
<td>618.2</td>
<td>17.8</td>
</tr>
<tr>
<td>Pass. A 37.2</td>
<td>78.4</td>
<td>628.7</td>
<td>18.3</td>
</tr>
<tr>
<td>Pass. A 37.5</td>
<td>77.6</td>
<td>629.5</td>
<td>18.5</td>
</tr>
<tr>
<td>Pass. B 37.8</td>
<td>77.2</td>
<td>638.6</td>
<td>18.6</td>
</tr>
<tr>
<td>Pass. B 38.0</td>
<td>76.9</td>
<td>637.8</td>
<td>18.6</td>
</tr>
</tbody>
</table>

Table 3: Cell results (125 × 125 mm² Cz, 3 Ωcm) of the best references compared to the best Al₂O₃(SiNx) passivated cells. A selective emitter structure is chosen for both groups with screen-printing of Ag on the front and Al on the rear side.
The dielectrically passivated solar cells exhibit a lower fill factor compared to the cells with a full area Al-BSF. One reason is the increased series resistance for the locally contacted cells. It can be extracted from the IV curves to about 0.6 \(\Omega \text{cm}^2 \) for the locally contacted cells compared to 0.5 \(\Omega \text{cm}^2 \) for the references.

However, the dielectrically passivated solar cells reach significantly higher values for open circuit voltage and short-circuit current density. The origin of this gain in \(J_{sc} \) is analyzed by a spectral response measurement as shown in Fig. 1.

A part of the \(J_{sc} \) gain can also be attributed to better light confinement within the solar cell. Rear sides formed by firing Al paste are known for absorbing a great deal of the light that passes through the wafer [6]. In contrast, the cells with the dielectric passivation stack between the silicon and the paste show enhanced reflectance values in the infrared wavelength range (see Fig. 2).

This means that the passivating layers act as internal reflectors even when combined with fired Al paste, giving the incident photons above 980 nm a higher probability to be absorbed in the active Si bulk material. Typical infrared reflectances, as fitted from the spectral response data, are around 90% with a Lambertian factor of about 0.9 compared with full Al rear sides that show reflectances around 70%.

When applying the AM1.5 spectrum to the measured IQE and reflectance, the \(J_{sc} \) gain achieved by improved optics can be calculated to 0.8 mA/cm² and the \(J_{sc} \) gain by less rear side recombination is estimated to 0.8 mA/cm². These calculations show good accordance with the measured \(J_{sc} \) differences of about 1.5 mA/cm².

REAR SIDE LOSS ANALYSIS

Investigation by laser beam induced current (LBIC) on the finished cells at a wavelength of 980 nm reveals the quality of the rear side passivation, which has, as suggested by the spectral response data, an IQE close to 100%. However, the limiting factor of the rear side is the surrounding region of the point contacts. Fig. 4 shows an example where insufficient passivation at the contact region affects a major areal fraction of the cell rear side. It is fired with rather conservative firing parameters, described as “A” before.

A part of the \(J_{sc} \) gain can also be attributed to better light confinement within the solar cell. Rear sides formed by firing Al paste are known for absorbing a great deal of the light that passes through the wafer [6]. In contrast, the cells with the dielectric passivation stack between the silicon and the paste show enhanced reflectance values in the infrared wavelength range (see Fig. 2).

This means that the passivating layers act as internal reflectors even when combined with fired Al paste, giving the incident photons above 980 nm a higher probability to be absorbed in the active Si bulk material. Typical infrared reflectances, as fitted from the spectral response data, are around 90% with a Lambertian factor of about 0.9 compared with full Al rear sides that show reflectances around 70%.

When applying the AM1.5 spectrum to the measured IQE and reflectance, the \(J_{sc} \) gain achieved by improved optics can be calculated to 0.8 mA/cm² and the \(J_{sc} \) gain by less rear side recombination is estimated to 0.8 mA/cm². These calculations show good accordance with the measured \(J_{sc} \) differences of about 1.5 mA/cm².

REAR SIDE LOSS ANALYSIS

Investigation by laser beam induced current (LBIC) on the finished cells at a wavelength of 980 nm reveals the quality of the rear side passivation, which has, as suggested by the spectral response data, an IQE close to 100%. However, the limiting factor of the rear side is the surrounding region of the point contacts. Fig. 4 shows an example where insufficient passivation at the contact region affects a major areal fraction of the cell rear side. It is fired with rather conservative firing parameters, described as “A” before.

A part of the \(J_{sc} \) gain can also be attributed to better light confinement within the solar cell. Rear sides formed by firing Al paste are known for absorbing a great deal of the light that passes through the wafer [6]. In contrast, the cells with the dielectric passivation stack between the silicon and the paste show enhanced reflectance values in the infrared wavelength range (see Fig. 2).

This means that the passivating layers act as internal reflectors even when combined with fired Al paste, giving the incident photons above 980 nm a higher probability to be absorbed in the active Si bulk material. Typical infrared reflectances, as fitted from the spectral response data, are around 90% with a Lambertian factor of about 0.9 compared with full Al rear sides that show reflectances around 70%.

When applying the AM1.5 spectrum to the measured IQE and reflectance, the \(J_{sc} \) gain achieved by improved optics can be calculated to 0.8 mA/cm² and the \(J_{sc} \) gain by less rear side recombination is estimated to 0.8 mA/cm². These calculations show good accordance with the measured \(J_{sc} \) differences of about 1.5 mA/cm².

REAR SIDE LOSS ANALYSIS

Investigation by laser beam induced current (LBIC) on the finished cells at a wavelength of 980 nm reveals the quality of the rear side passivation, which has, as suggested by the spectral response data, an IQE close to 100%. However, the limiting factor of the rear side is the surrounding region of the point contacts. Fig. 4 shows an example where insufficient passivation at the contact region affects a major areal fraction of the cell rear side. It is fired with rather conservative firing parameters, described as “A” before.
contacts is much less pronounced. It stems from the batch called “B”, its rear-side quality can be evaluated in Fig. 4:

![Figure 4: IQE @ 980 nm of a cell from batch B with sufficiently passivated contact regions.](image)

Here, the local IQE drops only moderately to values around 90%. Such values at 980 nm correspond to the IQE achieved by a full-area BSF. It is therefore suggestive that the rear contacts of the latter cell feature a passivation mechanism based on p⁺ doping while the contacts in the first cell lack significant passivation. This behavior can be quantified by determination of their respective rear surface recombination velocities (RSRV).

According to Fischer [7], an effective rear surface recombination velocity (S_{eff}) for locally contacted solar cells can be defined that corresponds to the RSRV a cell with equal spectral response but uniform RSRV would show. It can be obtained by combining the RSRV of the passivating layers (S_{pass}) with the SRV of the metallized area (S_{met}) in the following way:

$$S_{eff} = \frac{D}{W} \left[\frac{p}{2W} \sqrt{\frac{\pi}{f}} \left(\frac{2W}{p} \right)^{1/2} \arctan \left(\frac{2W}{p} \right) + \frac{D}{fW S_{met}} \right]^{1/2} + S_{pass} \frac{1-f}{f}$$

Here, W is the wafer thickness, D the diffusion constant, p the contact pitch and f the metallization fraction. It holds under the assumptions that both bulk diffusion length and contact pitch is greater than wafer thickness, which is valid for the used Cz substrates. Low-injection conditions are also assumed.

From the spectral response measurements, the following values of S_{eff} can be extracted by the fitting procedure after Basore [8]. The results can be found in Table 4.

<table>
<thead>
<tr>
<th>Solar Cells</th>
<th>S_{eff} [cm/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-Al-BSF references</td>
<td>650 - 1000</td>
</tr>
<tr>
<td>Al₂O₃-Pass. batch A</td>
<td>240 - 320</td>
</tr>
<tr>
<td>Al₂O₃-Pass. batch B</td>
<td>140 - 190</td>
</tr>
</tbody>
</table>

Table 4: Effective rear surface recombination velocities for different cell types.

Since S_{eff} is now fixed, the values for S_{met} can be calculated from the Fischer equation if we assume reasonable values for S_{pass} after firing. These are determined by firing lifetime samples with an identical passivation stack at the same peak temperatures (measured on the wafer surface). An upper limit of 60 - 70 cm/s is found for the SRV of a sample with Al₂O₃/ SiNx surface passivation after firing.

Numerical solution suggests values of S_{met} in the order of 10⁴ cm/s for batch A and around 1500 cm/s for batch B. It can be easily deduced that the limiting factor in case A are the metal contacts themselves in contrast to case B, where a lowering of S_{pass} still has a major impact on S_{eff}.

SEM CONTACT AREA INVESTIGATION

Apparently the SRVs of the differently fired contacts vary by two orders of magnitude. For this reason, the contacts themselves deserve a closer look. The solar cells are broken along their crystal orientation and the cross-sections are examined with a scanning electron microscope (Zeiss Neon EsB CrossBeam).

![Figure 5: Cavern visible beneath each contacting spot.](image)
contact points, a transport occurs as illustrated in Fig. 6 which leads to local out-diffusion of dissolved silicon into the paste.

Figure 6: Out-diffusion of dissolved Si (red) from the wafer bulk (blue) under the contact spots into the Al paste (yellow). Green: Al₂O₃/SiNx stack

This behavior was reported before [10] and can hardly be avoided. It can, however, be influenced by the size of the opening, because contacts larger than 200 µm reach a saturation of Si in Al in their middle part and there the Al remains in contact with the wafer.

This also affects contact properties and passivation, since a bare Si flank is supposed to have an enormous recombination velocity. In order to search for the passivation mechanism apparently present in the samples from group B, SEM images are taken with the InLens detector. These images contrast the electronic structure and therefore allow to draw conclusions about the size of differently doped regions like an Al-BSF.

Fundamental differences between batch A and batch B can be found not so much in cavern size and shape, but in BSF thickness and coverage. While the caverns in batch A show only very thin BSF layers with a low doping contrast at the cavern flanks and no detectable doping contrast at the bottom of the caverns (see Fig. 7), the situation is very different with batch B. The doping contrast is more pronounced, the width of the p⁺-region spans several µm and the BSFs are enveloping the whole caverns (see Fig. 8). Under such conditions, no unpassivated metal surface is in contact with the Si bulk.

Figure 7: The contacts from batch A show a very thin (< 1µm) and low-contrast p⁺-region that appears only at the sides of the cavern. The arrow points at the doping contrast border.

The fill factor differences between the locally contacted cells can also be explained by different contact properties. In some samples, the caverns are found to be partially filled with Al-Si-alloy. In this case, the contact resistance between Al and Si is lowered since the alloy has a large contact area compared to the empty caverns that are contacted only at the flanks. The best fill factor achieved in this batch was 79.0% which is remarkable for a locally contacted cell with a local BSF.

Figure 8: At this contact from batch B an approximately 4-6 µm thick BSF is clearly visible around the whole cavern.

From these observations it can be deduced that the firing parameters have to be adjusted towards alloying conditions that retain sufficient amounts of Si-rich alloy...
around the contacts so that a BSF can be formed epitactically during cooling. These requirements are met with batch B, in contrast to the close-to-standard firing conditions applied to batch A that show insufficient local BSF formation. The unpassivated metal-Si interfaces at the contact sites show increased recombination that partially offsets the gains won by the \(\text{Al}_2\text{O}_3 \) passivation.

SUMMARY

A solar cell manufacturing process is developed to fabricate solar cells with dielectric rear side passivation that are metallized by means of screen-printing. The back contacts are established by firing Al paste through local openings in the passivating layers. These openings are structured by inkjet printing and wet chemical etching.

This is the first time that screen-printed \(\text{Al}_2\text{O}_3/\text{SiN}_x \) passivated solar cells on large-area p-type wafers are reported. Efficiencies of up to 18.6% are achieved thanks to a gain in \(J_{sc} \) originating from a higher internal quantum efficiency and enhanced reflection in the long-wavelength end of the spectrum.

The co-firing produces caverns at the local contact areas. Their size and shape is dependent on the dimensions of the vias in the passivating layers. However, acceptable fill factors and a local passivation of the point contacts are found. These beneficial properties can be attributed to the formation of a BSF by alloying in the contacting areas that is observable by SEM. The BSF lowers the local surface recombination velocity of the contacts by two orders of magnitude. This process and the resulting overall passivation quality, made visible by LBIC, strongly depends on the choice of suitable firing parameters and is quite independent of the via size.

ACKNOWLEDGEMENTS

The authors would like to thank L. Rothengaß, S. Ohl, B. Rettenmaier, J. Ruck, F. Mutter, C. Gründer, A. Zuschlag and V. Mayer for their support during cell processing and characterization. The financial support from the German BMU FKZ 0325168 and FKZ 0325079 is gratefully acknowledged. The content of this publication is the responsibility of the authors.

REFERENCES

