PAPER SUBMITTED FOR THE 2006 IEEE 4TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION IN HAWAII

BIFACIAL SOLAR CELLS ON MULTI-CRYSTALLINE SILICON WITH BORON BSF AND OPEN REAR CONTACT

A. Kränzl¹*, R. Kopecek¹, K. Peter¹, P. Fath²

¹University of Konstanz, Faculty of Sciences, Department of Physics, 78457 Konstanz, Germany
Phone (+49) 7531/88-3174; Fax (+49) 7531/88-3895; e-mail: Andreas.Kraenzl@uni-konstanz.de
²now at: International Solar Energy Research Center Konstanz, 78467 Konstanz, Germany

ABSTRACT

The standard industrial multi-crystalline silicon (mc-Si) solar cell is monofacial and includes screen printed aluminum back surface field (BSF). A simple approach to increase performance and reduce costs per W peak is to collect the albedo on the rear side. In this work a bifacial, screen printed mc-Si solar cell with boron BSF is demonstrated. Rear to front efficiency ratios of up to 0.83 have been reached on 100x100mm² mc-Si wafers with a thickness of about 200µm. The best solar cell processed so far with a boron BSF had an efficiency under front side illumination of η=16.1% and a back to front efficiency ratio of 0.77. The possible gain in performance in later operation was estimated using PC1D simulation and depends on the albedo that is the amount of light that penetrates into the solar cell from the rear side. The simulation was confirmed by outside module tests, leading to an average gain of 19.5% over one day.

INTRODUCTION

The standard industrial process for manufacturing monofacial p-type mc-Si solar cells includes screen printed aluminum BSF, achieving an average efficiency of more than 15% in industrial production. Key issues for reducing costs of photovoltaic devices per W peak are to increase performance as well as to reduce wafer thickness. An easy way to achieve the first task is to collect the albedo on the rear side of the cell. Therefore the replacement of the full rear side metallization by an open rear contact (finger grid) is necessary to get a bifacial cell (Figure 1). By doing this the second task is solved as well as the most crucial step in processing of thin wafers is the fully Al metallised rear side leading to high rear recombination velocity and wafer bowing. Most of the common bifacial solar cells are made from silicon with very high charge carrier lifetimes, such as FZ silicon. An overview of different bifacial solar cells is given in [1]. Compared to the Al-BSF alloying, the B-BSF is diffused into the wafer and causes no measurable bowing. As the solubility of boron in silicon is higher than that of aluminum, higher carrier concentrations are achieved. Similar processes are already demonstrated on FZ material [2].

SOLAR CELL PROCESS

In the experiments described below we used 100x100 mm² p-type mc-Si wafers with a standard thickness of about 200µm. The cross-section of the bifacial boron BSF solar cell is shown schematically in Figure 2.

Figure 1. The boron BSF bifacial solar cell. The back side can be seen in the mirror and looks similar to front side.

Boron diffusion is considered to be the main difficulty in processing mc-Si solar cells. The diffusivity of boron is much lower than that of phosphorous. Higher diffusion temperatures (or longer processing times) have to be applied for the boron diffusion. Therefore the BBr₃ diffusion has to take place before the emitter diffusion, to avoid further diffusion of the phosphorus atoms. As both diffusions were carried out in an open tube furnace, the opposite side of the wafer has to be protected to secure single sided diffusion or the diffused layer of silicon has to be etched off on one side afterwards. It was shown that boron diffusion is possible at moderate temperatures (around 930°C) in an open tube furnace using a BBr₃ source while maintaining the minority charge carrier lifetime in mc-Si material [3].

Figure 2. Cross-section of the boron BSF solar cell.
For the solar cell process BBr₃ diffusion at a moderate temperature around 930°C was used in an open tube furnace leading to BSF sheet resistances of around 60 Ω/sq with the silicon wafers face to face. To avoid the boron rich layer (BRL) that is created during the diffusion, an in-situ thermal oxidation and deglazing step took place. The emitter was formed by phosphorous diffusion (POCl₃) afterwards in back to back configuration. The doping profiles of the boron BSF and the phosphorus emitter were measured using electrochemical capacitance voltage (ECV) method and are depicted in Figure 3. Surface passivation on the front side was done by PECVD SiNx deposition and thermal SiO₂/PECVD SiNx stack on the back side.

Even though the wafers were diffused back to back, boron atoms diffuse around the wafer edges to the front side into the wafer. This boron diffused region at the edge of the front side leads to shunting of the solar cell. Therefore the edge isolation using a dicing saw is essential. The untextured cells get an additional etch off of the front surface prior to the emitter diffusion, which makes the process more reliable. The contact metallization was carried out by screen printing using an Ag paste on the front side and an AgAl paste on the back side. The co-firing of the contacts was done in a belt furnace.

Various variations in the solar cell process have been made to increase the front side efficiency (Figure 4) as well as the back to front efficiency ratio (Figure 5). The first cell generation featured only boron BSF and no additional surface passivation on the back side. Therefore the first generation shows only a very marginal performance under back side illumination. With a SiO₂/SiNx stack system on the rear side a gain in performance is obtained, due to the better rear side passivation which leads to a higher Voc and also better rear performances due to the ARC.

Starting with the fourth generation the solar cells feature an isotextured surfaces on both sides. Due to the better reflection more light get into the cell, which leads to a higher Jsc and therefore a better performance. Thinner wafer with a thicknesses of 200-230 µm were used in process # 3, 5, and 6 (compared to 350 µm in #1, 2, 4) to increase the rear side performance due to the better ratio between bulk lifetime and wafer thickness (Ld/d > 2.5 requirement). In # 6 wafers from Elkem’s solar grade silicon were processed. The process for both, textured and untextured solar cells is summarized in Figure 6.
RESULTS AND DISCUSSION

The solar cell results (100 x 100 mm² p-type mc-Si wafer with a thickness of about 200 µm) for the best cells are summarized in Table 1.

Table 1. Solar cell results on 100 x 100 mm² wafers, 200 µm thick, best cells

<table>
<thead>
<tr>
<th></th>
<th>FF (%)</th>
<th>J_{SC} [mA/cm²]</th>
<th>V_{OC} [mV]</th>
<th>ETA [%]</th>
<th>ratio [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>isotextured, 200 µm thick</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>front side illumination</td>
<td>76.0</td>
<td>33.4</td>
<td>617</td>
<td>15.7</td>
<td>0.73</td>
</tr>
<tr>
<td>back side illumination</td>
<td>77.0</td>
<td>24.3</td>
<td>609</td>
<td>11.4</td>
<td></td>
</tr>
<tr>
<td>75% SoG & 25% EG Si, 230 µm thick</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>front side illumination</td>
<td>75.6</td>
<td>34.3</td>
<td>620</td>
<td>16.1</td>
<td>0.77</td>
</tr>
<tr>
<td>back side illumination</td>
<td>74.8</td>
<td>26.9</td>
<td>615</td>
<td>12.4</td>
<td></td>
</tr>
</tbody>
</table>

An average efficiency of η = 15.1% was reached for a group of eight isotextured cells. For comparison, solar cells were processed on wafers made from a newly developed solar grade silicon feedstock [4]. This solar grade silicon (Elkem-Si) comes from a metallurgical purification process of MG-Si, with cost effective refining steps. For the group (4 cells) with the SG-Si material (Table 1) the average efficiency was η = 15.5%. Why the SG material is more beneficial for this process has to be resolved in future experiments.

Under back side illumination the performance decreased as expected, due to the unfavorable ratio between wafer thickness and bulk lifetime (compared to FZ silicon). This can be also seen in the IQE curve, as the IQE increases only slowly for wavelengths greater than 500 nm and reaches its maximum at a wavelength at around 1000 nm. Photons with higher wavelengths penetrate deeper into the silicon; electron holes pairs generated from those photons are generated closer to the emitter, therefore the IQE is higher (Figure 7).

PC1D SIMULATION

To make further estimations of the cell performance under double sided illumination, the boron BSF solar cell was simulated using PC1D. First the PC1D parameters were fitted to the cell results for illumination from each side separately. With these parameters we simulated the cell performance with one sun illumination on the front side and different albedos on the back side for different wafer thicknesses. The simulated results are summarized in Figure 8.

Figure 8. Contour plot: performance as a function of wafer thickness and intensity of rear illumination

The simulation showed that the increase in wafer performance is expected to be even higher if wafers thinner then 100 µm are considered.

MODULE DESIGN AND MOUNTING

For a bifacial module both sides have to be transparent, which was realized by a glass-glass module. A one cell mini-module was made for field testing.

Figure 9. Module test setup

For the output performance the orientation of the bifacial module to the sun is important. There are many possibilities to do this which are discussed in [5] and [6], especially for cells made of FZ or Cz which back to front efficiency ratio is close to one. One possibility is to maximize the irradiation on both sides, as for example in vertical free standing structure. But we have to take in consideration that our bifacial cells are made of mc-Si and
We have demonstrated that solar cells with boron BSF could be realized on mc-Si and is also applicable on solar grade feedstock material. The best solar cell processed so far on SG Si wafers had an efficiency under front side illumination of $\eta = 16.1\%$ ($J_{SC} = 34.3\,mA/cm^2$, $V_{OC} = 620\,mV$ and $FF = 75.6\%$) and under rear side illumination of $\eta = 12.4\%$ ($J_{SC} = 26.9\,mA/cm^2$, $V_{OC} = 615\,mV$, $FF = 74.8\%$) with a back to front efficiency ratio of 0.77. The solar cell results in front illumination were comparable to industrial mc-Si solar cells and the PC1D simulation as well as the preliminary module experiments showed that there is an additional gain in performance due to the bifacial cell concept. Wafer bowing is completely avoided with the process and it could be realized in near future in most of the existing solar cell production lines. When introduced to the industry it could contribute to maintain the rapid growth of the PV sector as less Si per W peak is needed.

In a module test under realistic conditions an average gain in performance of 19.5% was reached over one day. The test showed that bifacial solar cell concepts are promising, not only for Cz or FZ material but also for industrial mc silicon solar cells. More detailed studies of different types of bifacial modules made with cells from multi-crystalline silicon have to be made.

ACKNOWLEDGEMENTS

The authors would like to thank J. Arumughan, T. Buck and J. Libal for fruitful discussions and support with the BBr$_3$ diffusion. The underlying project of parts of this report was supported with funding of the German BMU under contract number 0327514 and by the EU funded project “Crystal Clear” under the contract Nr. SES6-CT2003-502583. The content of this publication is the responsibility of the authors.

REFERENCES